Dynamic control of electronic differential in the field weakening region

O. C. Kivanc, O. Ustun*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

2 Atıf (Scopus)

Özet

A simple and dynamic electronic differential control method for an outer rotor motor driven electric vehicle based on fuzzy gain scheduling of PI gains method is proposed for constant torque and power region operation using brushless direct current (BLDC) machine. The proposed method is quite insensitive to torque fluctuations and transient speed oscillations due to surface mounted permanent magnet (SMPM) BLDC machines constraints in the field weakening region. To improve the dynamics and stability of the electronic differential system and eliminate the skidding of the wheels and reduce the heating of electric machine in the wide speed range operation, a robust control method is developed. Moreover, PI controller gains are updated continuously by fuzzy gain scheduling approach which has phase advance angle, steering angle and measured speed as controller input parameters in order to eliminate the errors caused from the variable road conditions and torque oscillations in the field weakening region. The proposed method is implemented with 2 × 1.5 kW BLDC motor drive controlled by a TMS320F28335 digital signal processor (DSP). The experimental results show that the proposed method exhibits greater stability under various load, road and vehicle speed conditions.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1583-1601
Sayfa sayısı19
DergiInternational Journal of Electronics
Hacim106
Basın numarası10
DOI'lar
Yayın durumuYayınlandı - 3 Eki 2019

Bibliyografik not

Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.

Parmak izi

Dynamic control of electronic differential in the field weakening region' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap