Digital Twin-Enabled Intelligent DDoS Detection Mechanism for Autonomous Core Networks

Yagmur Yigit, Bahadir Bal, Aytac Karameseoglu, Trung Q. Duong*, Berk Canberk

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

26 Atıf (Scopus)

Özet

Existing distributed denial of service attack (DDoS) solutions cannot handle highly aggregated data rates; thus, they are unsuitable for Internet service provider (ISP) core networks. This article proposes a digital twin-enabled intelligent DDoS detection mechanism using an online learning method for autonomous systems. Our contributions are three-fold: we first design a DDoS detection architecture based on the digital twin for ISP core networks. We implemented a Yet Another Next Generation (YANG) model and an automated feature selection (AutoFS) module to handle core network data. We used an online learning approach to update the model instantly and efficiently, improve the learning model quickly, and ensure accurate predictions. Finally, we reveal that our proposed solution successfully detects DDoS attacks and updates the feature selection method and learning model with a true classification rate of ninety-seven percent. Our proposed solution can estimate the attack within approximately fifteen minutes after the DDoS attack starts.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)38-44
Sayfa sayısı7
DergiIEEE Communications Standards Magazine
Hacim6
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - 1 Eyl 2022

Bibliyografik not

Publisher Copyright:
© 2017 IEEE.

Parmak izi

Digital Twin-Enabled Intelligent DDoS Detection Mechanism for Autonomous Core Networks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap