Özet
Recent research considers the application of a lens antenna array in order to provide efficient beam selection in beamspace massive MIMO. Achieving the advantages of this beam selection paradigm requires efficient channel estimation in the beamspace. Along this line, beamspace sparsity is an efficient regularizer to this problem. In this paper, we propose using a dictionary trained over a set of example beam selection matrices, as a beam selection tool. In this context, a learned dictionary can more effectively guarantee the sparsity of the representation at the specified sparsity level, owing to the dictionary learning process. This means that it gives a better sparse representation, and, consequently, a better channel estimation quality. Simulations validate that using a trained dictionary improves the quality of channel estimation, as tested over two channel models with different operating scenarios.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019 |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 20-25 |
Sayfa sayısı | 6 |
ISBN (Elektronik) | 9781538677476 |
DOI'lar | |
Yayın durumu | Yayınlandı - Haz 2019 |
Harici olarak yayınlandı | Evet |
Etkinlik | 15th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2019 - Tangier, Morocco Süre: 24 Haz 2019 → 28 Haz 2019 |
Yayın serisi
Adı | 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019 |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 15th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2019 |
---|---|
Ülke/Bölge | Morocco |
Şehir | Tangier |
Periyot | 24/06/19 → 28/06/19 |
Bibliyografik not
Publisher Copyright:© 2019 IEEE.