Diagnosis of diabetes mellitus using artificial neural network and classification and regression tree optimized with genetic algorithm

Ebru Pekel Özmen*, Tuncay Özcan

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

16 Atıf (Scopus)

Özet

Diabetes mellitus is one of the most important public health problems affecting millions of people worldwide. An early and accurate diagnosis of diabetes mellitus has critical importance for the medical treatments of patients. In this study, first, artificial neural network (ANN) and classification and regression tree (CART)-based approaches are proposed for the diagnosis of diabetes. Hybrid ANN-GA and CART-GA approaches are then developed using a genetic algorithm (GA) to improve the classification accuracy of these approaches. Finally, the performances of the developed approaches are evaluated with a Pima Indian diabetes data set. Experimental results show that the developed hybrid CART-GA approach outperforms the ANN, CART, and ANN-GA approaches in terms of classification accuracy, and this approach provides an efficient methodology for diagnosis of diabetes mellitus.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)661-670
Sayfa sayısı10
DergiJournal of Forecasting
Hacim39
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - 1 Tem 2020

Bibliyografik not

Publisher Copyright:
© 2020 John Wiley & Sons, Ltd.

Parmak izi

Diagnosis of diabetes mellitus using artificial neural network and classification and regression tree optimized with genetic algorithm' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap