TY - JOUR
T1 - Development of highly efficient and reusable Ruthenium complex catalyst for hydrogen evolution
AU - Kilinc, Dilek
AU - Sahin, Omer
N1 - Publisher Copyright:
© 2021 Hydrogen Energy Publications LLC
PY - 2022/1/19
Y1 - 2022/1/19
N2 - Herein, we report an efficient, environmentally friendly and stable catalyst development to hydrogen evolution from sodium borohydride hydrolysis. For this purpose, Ruthenium complex catalyst successfully fabricated via 5-Amino-2,4-dichlorophenol-3,5-ditertbutylsalisylaldimine ligand and RuCl3·H2O salt. Ru complex catalyst was identified with X-Ray Diffraction Analysis, Infrared Spectroscopy, Elemental Analysis, Transmission electron microscopy, Scanning Electron Microscope and Brunauer-Emmett-Teller Surface Area Analysis. According to the analysis results, it was confirmed that Ru complex catalyst was successfully synthesized. Ru complex was used as a catalyst in NaBH4 hydrolysis. The kinetic performance of Ru complex catalyst was evaluated at various reaction temperatures, various sodium borohydride concentration, catalyst concentration and sodium hydroxide concentration in hydrogen evolution. The apparent activation energy for the hydrolysis of sodium borohydride was determined as 25.8 kJ mol−1. With fully conversion, the promised well durability of Ru complex was achieved by the five consecutive cycles for hydrogen evolution in sodium borohydride hydrolysis The hydrogen evolution rates were 299,220 and 160,832 mL H2 gcat−1 min−1 in order of at 50 °C and 30 °C. Furthermore, the proposed mechanism of Ru complex catalyzed sodium borohydride hydrolysis was defined step by step. This study provides different insight into the rational design and utilization and catalytic effects of ruthenium complex in hydrogen evolution performance.
AB - Herein, we report an efficient, environmentally friendly and stable catalyst development to hydrogen evolution from sodium borohydride hydrolysis. For this purpose, Ruthenium complex catalyst successfully fabricated via 5-Amino-2,4-dichlorophenol-3,5-ditertbutylsalisylaldimine ligand and RuCl3·H2O salt. Ru complex catalyst was identified with X-Ray Diffraction Analysis, Infrared Spectroscopy, Elemental Analysis, Transmission electron microscopy, Scanning Electron Microscope and Brunauer-Emmett-Teller Surface Area Analysis. According to the analysis results, it was confirmed that Ru complex catalyst was successfully synthesized. Ru complex was used as a catalyst in NaBH4 hydrolysis. The kinetic performance of Ru complex catalyst was evaluated at various reaction temperatures, various sodium borohydride concentration, catalyst concentration and sodium hydroxide concentration in hydrogen evolution. The apparent activation energy for the hydrolysis of sodium borohydride was determined as 25.8 kJ mol−1. With fully conversion, the promised well durability of Ru complex was achieved by the five consecutive cycles for hydrogen evolution in sodium borohydride hydrolysis The hydrogen evolution rates were 299,220 and 160,832 mL H2 gcat−1 min−1 in order of at 50 °C and 30 °C. Furthermore, the proposed mechanism of Ru complex catalyzed sodium borohydride hydrolysis was defined step by step. This study provides different insight into the rational design and utilization and catalytic effects of ruthenium complex in hydrogen evolution performance.
KW - Hydrogen
KW - Hydrolysis
KW - Ru complex
KW - Sodium borohydride
UR - http://www.scopus.com/inward/record.url?scp=85120060457&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2021.11.051
DO - 10.1016/j.ijhydene.2021.11.051
M3 - Article
AN - SCOPUS:85120060457
SN - 0360-3199
VL - 47
SP - 3876
EP - 3885
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 6
ER -