Detecting multiclass objects in remote sensing imagery: A deep learning approach

Furkan Büyükkanber*, Mustafa Yanalak, Nebiye Musaoǧlu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıKonferans makalesibilirkişi

Özet

Object detection from remote sensing imagery is crucial in fields including monitoring agriculture, efficient urban planning, environmental conservation, and disaster response. It enables informed decision-making by identifying and tracking objects such as crops, infrastructure, and environmental changes, contributing to optimized re-source management and rapid response in various domains. Multiclass object detection benefits from the transformative power of deep learning, surpassing traditional methods in accuracy and efficiency. This research investigates the effects of data augmentation techniques and diverse hyperparameters on the training process of a single-stage YOLOv5 deep learning algorithm applied to the selected DIOR remote sensing dataset for multiclass object detection practices, resulting in 0.628 mAP score among the applied experiments.

Orijinal dilİngilizce
Makale numarası012011
DergiJournal of Physics: Conference Series
Hacim2870
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik2024 4th International Conference on Computer, Remote Sensing and Aerospace, CRSA 2024 - Virtual, Online, Japan
Süre: 5 Tem 20247 Tem 2024

Bibliyografik not

Publisher Copyright:
© Published under licence by IOP Publishing Ltd.

Parmak izi

Detecting multiclass objects in remote sensing imagery: A deep learning approach' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap