Despeckling Based Data Augmentation Approach in Deep Learning Based Radar Target Classification

S. H.Mert Ceylan, Isin Erer

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

Speckle noise in SAR images distorts the image of the target and its surroundings, making difficult the target recognition task. Therefore, decomposition process of the speckle noise from the SAR images is important for radar automatic target recognition applications. Besides since the succes of the deep networks depends on the amount of data used in the training stage data augmentation increases classification rates. In this study, a new data augmentation approach based on despeckling has been proposed rather than the classical data augmentation techniques used in the processing of natural images in order to increase the deep learning-based radar target classification performance. Edge Avoiding Wavelet filter is used for speckle reduction task. Classification performances for original, despeckled and despeckling based data augmented datasets are compared on two traditional and basic CNN models. The experimental results show that despeckling based data augmentation method can improve the deep learning based radar automatic target recognition classification performance.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar2706-2709
Sayfa sayısı4
ISBN (Elektronik)9781665427920
DOI'lar
Yayın durumuYayınlandı - 2022
Etkinlik2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, Malaysia
Süre: 17 Tem 202222 Tem 2022

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)
Hacim2022-July

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
Ülke/BölgeMalaysia
ŞehirKuala Lumpur
Periyot17/07/2222/07/22

Bibliyografik not

Publisher Copyright:
© 2022 IEEE.

Parmak izi

Despeckling Based Data Augmentation Approach in Deep Learning Based Radar Target Classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap