Özet
This work proposes a textile-dominated wearable actuating system utilizing textile force sensor feedback. The study explores the liquid/gas phase transition behaviour of low boiling point liquids to develop a thermally driven fluidic soft actuator. The research also focuses on obtaining feedback through capacitive textile force sensors and developing a feedback control law for a single actuator as well as sequential actuation of multiple actuators. The findings demonstrate that the proposed actuators produce the desired pressure level utilized in mechanotherapy applications. Moreover, high accuracy is achieved by the capacitive textile force sensors specifically designed for detecting the applied force exerted by the textile-based actuators. The developed system constitutes a comprehensive textile-based system encompassing heating, actuation and sensing capabilities. Following the calibration of the developed system in conjunction with its sensor, a pilot-scale implementation of sequential massage application was conducted to showcase the system’s capabilities and potential. Considering its pressure and heating properties, the developed system exhibits a great potential for utilization in mechanotherapy as well as in thermotherapy applications.
Orijinal dil | İngilizce |
---|---|
Dergi | Transactions of the Institute of Measurement and Control |
DOI'lar | |
Yayın durumu | Kabul Edilmiş/Basında - 2024 |
Bibliyografik not
Publisher Copyright:© The Author(s) 2024.
Finansman
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the European Commission through the Maria Sklodowska-Curie Individual Fellowships Programme under project RoboTexTherapy with contract no. 845683. This project is also partly funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with Research Grant no. 120C118.
Finansörler | Finansör numarası |
---|---|
European Commission | 845683 |
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | 120C118 |