Deshufflegan: A Self-Supervised Gan to Improve Structure Learning

Gulcin Baykal, Gozde Unal

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

Generative Adversarial Networks (GANs) triggered an increased interest in problem of image generation due to their improved output image quality and versatility for expansion towards new methods. Numerous GAN-based works attempt to improve generation by architectural and loss-based extensions. We argue that one of the crucial points to improve the GAN performance in terms of realism and similarity to the original data distribution is to be able to provide the model with a capability to learn the spatial structure in data. To that end, we propose the DeshuffleGAN to enhance the learning of the discriminator and the generator, via a self-supervision approach. Specifically, we introduce a deshuffling task that solves a puzzle of randomly shuffled image tiles, which in turn helps the DeshuffleGAN learn to increase its expressive capacity for spatial structure and realistic appearance. We provide experimental evidence for the performance improvement in generated images, compared to the baseline methods, which is consistently observed over two different datasets.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings
YayınlayanIEEE Computer Society
Sayfalar708-712
Sayfa sayısı5
ISBN (Elektronik)9781728163956
DOI'lar
Yayın durumuYayınlandı - Eki 2020
Etkinlik2020 IEEE International Conference on Image Processing, ICIP 2020 - Virtual, Abu Dhabi, United Arab Emirates
Süre: 25 Eyl 202028 Eyl 2020

Yayın serisi

AdıProceedings - International Conference on Image Processing, ICIP
Hacim2020-October
ISSN (Basılı)1522-4880

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2020 IEEE International Conference on Image Processing, ICIP 2020
Ülke/BölgeUnited Arab Emirates
ŞehirVirtual, Abu Dhabi
Periyot25/09/2028/09/20

Bibliyografik not

Publisher Copyright:
© 2020 IEEE.

Parmak izi

Deshufflegan: A Self-Supervised Gan to Improve Structure Learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap