DeepMQ: A deep learning approach based myelin quantification in microscopic fluorescence images

Sibel Çimen, Abdulkerim Çapar, Dursun Ali Ekinci, Bilal Ersen Kerman, Umut Engin Ayten, Behçet Ugur Töreyin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

Oligodendrocytes wrap around the axons and form the myelin. Myelin facilitates rapid neural signal transmission. Any damage to myelin disrupts neuronal communication leading to neurological diseases such as multiple sclerosis (MS). There is no cure for MS. This is, in part, due to lack of an efficient method for myelin quantification during drug screening. In this study, an image analysis based myelin sheath detection method, DeepMQ, is developed. The method consists of a feature extraction step followed by a deep learning based binary classification module. The images, which were acquired on a confocal microscope contain three channels and multiple z-sections. Each channel represents either oligodendroyctes, neurons, or nuclei. During feature extraction, 26-neighbours of each voxel is mapped onto a 2D feature image. This image is, then, fed to the deep learning classifier, in order to detect myelin. Results indicate that 93.38% accuracy is achieved in a set of fluorescence microscope images of mouse stem cell-derived oligodendroyctes and neurons. To the best of authors' knowledge, this is the first study utilizing image analysis along with machine learning techniques to quantify myelination.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2018 26th European Signal Processing Conference, EUSIPCO 2018
YayınlayanEuropean Signal Processing Conference, EUSIPCO
Sayfalar61-65
Sayfa sayısı5
ISBN (Elektronik)9789082797015
DOI'lar
Yayın durumuYayınlandı - 29 Kas 2018
Etkinlik26th European Signal Processing Conference, EUSIPCO 2018 - Rome, Italy
Süre: 3 Eyl 20187 Eyl 2018

Yayın serisi

AdıEuropean Signal Processing Conference
Hacim2018-September
ISSN (Basılı)2219-5491

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???26th European Signal Processing Conference, EUSIPCO 2018
Ülke/BölgeItaly
ŞehirRome
Periyot3/09/187/09/18

Bibliyografik not

Publisher Copyright:
© EURASIP 2018.

Finansman

We gratefully thank TUBITAK (project number: 316S026) and Turkish Academy of Sciences for their financial support.

FinansörlerFinansör numarası
TUBITAK
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu316S026
Türkiye Bilimler Akademisi

    Parmak izi

    DeepMQ: A deep learning approach based myelin quantification in microscopic fluorescence images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap