TY - JOUR
T1 - Deep learning frameworks to learn prediction and simulation focused control system models
AU - Tuna, Turcan
AU - Beke, Aykut
AU - Kumbasar, Tufan
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/1
Y1 - 2022/1
N2 - Deep learning (DL) methods have brought world-shattering breakthroughs, especially in computer vision and classification problems. Yet, the design and deployment of DL methods in time series prediction and nonlinear system identification applications still need more progress. In this paper, we present DL frameworks that are developed to provide novel approaches as solutions to the aforementioned engineering problems. The proposed DL frameworks leverage the advantages of autoencoders and long-short term memory network, which are known being data compression and recurrent structures, respectively, to design Deep Neural Networks (DNN) for modeling time series and nonlinear systems with high performance. We provide recommendations on how deep AEs and LSTMs should be utilized to end up with efficient Prediction-focused (Pf) and Simulation-focused (Sf) DNNs for time series and system identification problems. We present systematic learning methods for the DL frameworks that allow straightforward learning of Pf-DNN and Sf-DNN models in detail. To demonstrate the efficiency of the developed DNNs, we present various comparative results conducted on the benchmark and real-world datasets in comparison with their conventional, shallow, and deep neural network counterparts. The results clearly show that the deployment of the proposed DL frameworks results with DNNs that have high accuracy, even with a low dimensional feature vector.
AB - Deep learning (DL) methods have brought world-shattering breakthroughs, especially in computer vision and classification problems. Yet, the design and deployment of DL methods in time series prediction and nonlinear system identification applications still need more progress. In this paper, we present DL frameworks that are developed to provide novel approaches as solutions to the aforementioned engineering problems. The proposed DL frameworks leverage the advantages of autoencoders and long-short term memory network, which are known being data compression and recurrent structures, respectively, to design Deep Neural Networks (DNN) for modeling time series and nonlinear systems with high performance. We provide recommendations on how deep AEs and LSTMs should be utilized to end up with efficient Prediction-focused (Pf) and Simulation-focused (Sf) DNNs for time series and system identification problems. We present systematic learning methods for the DL frameworks that allow straightforward learning of Pf-DNN and Sf-DNN models in detail. To demonstrate the efficiency of the developed DNNs, we present various comparative results conducted on the benchmark and real-world datasets in comparison with their conventional, shallow, and deep neural network counterparts. The results clearly show that the deployment of the proposed DL frameworks results with DNNs that have high accuracy, even with a low dimensional feature vector.
KW - Autoencoders
KW - Deep learning
KW - LSTM
KW - Nonlinear system identification
KW - Time series prediction
UR - http://www.scopus.com/inward/record.url?scp=85105455103&partnerID=8YFLogxK
U2 - 10.1007/s10489-021-02416-0
DO - 10.1007/s10489-021-02416-0
M3 - Article
AN - SCOPUS:85105455103
SN - 0924-669X
VL - 52
SP - 662
EP - 679
JO - Applied Intelligence
JF - Applied Intelligence
IS - 1
ER -