TY - JOUR
T1 - Deep Learning-Based Road Extraction From Historical Maps
AU - Avci, Cengiz
AU - Sertel, Elif
AU - Kabadayi, Mustafa Erdem
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2022
Y1 - 2022
N2 - Automatic road extraction from historical maps is an important task to understand past transportation conditions and conduct spatiotemporal analysis revealing information about historical events and human activities over the years. This research aimed to propose the ideal architecture, encoder, and hyperparameter settings for the historical road extraction task. We used a dataset including 7076 patches with the size of 256 ×256 pixels generated from scanned historical Deutsche Heereskarte 1:200 000 Türkei (DHK 200 Turkey) maps and their corresponding digitized ground truth masks for five different roads types. We first tested the widely used Unet++ and Deeplabv3 architectures. We also evaluated the contribution of attention models by implementing Unet++ with the concurrent spatial and channel-squeeze and excitation block and multiscale attention net. We achieved the best results with split-attention network (Timm-resnest200e) encoder and Unet++ architecture, with 98.99% overall accuracy, 41.99% intersection of union, 51.41% precision, 69.7% recall, and 57.72% F1 score values. Our output weights could be directly used for the inference of other DHK maps and transfer learning for similar or different historical maps. The proposed architecture could also be implemented in different road extraction studies.
AB - Automatic road extraction from historical maps is an important task to understand past transportation conditions and conduct spatiotemporal analysis revealing information about historical events and human activities over the years. This research aimed to propose the ideal architecture, encoder, and hyperparameter settings for the historical road extraction task. We used a dataset including 7076 patches with the size of 256 ×256 pixels generated from scanned historical Deutsche Heereskarte 1:200 000 Türkei (DHK 200 Turkey) maps and their corresponding digitized ground truth masks for five different roads types. We first tested the widely used Unet++ and Deeplabv3 architectures. We also evaluated the contribution of attention models by implementing Unet++ with the concurrent spatial and channel-squeeze and excitation block and multiscale attention net. We achieved the best results with split-attention network (Timm-resnest200e) encoder and Unet++ architecture, with 98.99% overall accuracy, 41.99% intersection of union, 51.41% precision, 69.7% recall, and 57.72% F1 score values. Our output weights could be directly used for the inference of other DHK maps and transfer learning for similar or different historical maps. The proposed architecture could also be implemented in different road extraction studies.
KW - Convolutional neural networks
KW - historical maps
KW - multiclass road segmentation
KW - road type detection
UR - http://www.scopus.com/inward/record.url?scp=85137865765&partnerID=8YFLogxK
U2 - 10.1109/LGRS.2022.3204817
DO - 10.1109/LGRS.2022.3204817
M3 - Article
AN - SCOPUS:85137865765
SN - 1545-598X
VL - 19
JO - IEEE Geoscience and Remote Sensing Letters
JF - IEEE Geoscience and Remote Sensing Letters
M1 - 3513605
ER -