Danişman Aǧ Kullanarak Derin Otomatik Kodlayicilar ile İçboyama

Ugur Demir*, Gozde Unal

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

6 Atıf (Scopus)

Özet

In this study, we tried to find a solution for inpainting problem using deep convolutional autoencoders. A new training approach has been proposed as an alternative to the Generative Adversarial Networks. The neural network that designed for inpainting takes an image, which the certain part of its center is extracted, as an input then it attempts to fill the blank region. During the training phase, a distinct deep convolutional neural network is used and it is called Advisor Network. We show that the features extracted from intermediate layers of the Advisor Network, which is trained on a different dataset for classification, improves the performance of the autoencoder.

Tercüme edilen katkı başlığıInpainting by deep autoencoders using an advisor network
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2017 25th Signal Processing and Communications Applications Conference, SIU 2017
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781509064946
DOI'lar
Yayın durumuYayınlandı - 27 Haz 2017
Etkinlik25th Signal Processing and Communications Applications Conference, SIU 2017 - Antalya, Turkey
Süre: 15 May 201718 May 2017

Yayın serisi

Adı2017 25th Signal Processing and Communications Applications Conference, SIU 2017

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???25th Signal Processing and Communications Applications Conference, SIU 2017
Ülke/BölgeTurkey
ŞehirAntalya
Periyot15/05/1718/05/17

Bibliyografik not

Publisher Copyright:
© 2017 IEEE.

Keywords

  • auto-encoder
  • convolutional neural network
  • deep learning
  • inpainting

Parmak izi

Danişman Aǧ Kullanarak Derin Otomatik Kodlayicilar ile İçboyama' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap