Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data

Turgay Partal*, H. Kerem Cigizoglu, Ercan Kahya

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

53 Atıf (Scopus)

Özet

In this study, three different neural network algorithms (feed forward back propagation, FFBP; radial basis function; generalized regression neural network) and wavelet transformation were used for daily precipitation predictions. Different input combinations were tested for the precipitation estimation. As a result, the most appropriate neural network model was determined for each station. Also linear regression model performance is compared with the wavelet neural networks models. It was seen that the wavelet FFBP method provided the best performance evaluation criteria. The results indicate that coupling wavelet transforms with neural network can provide significant advantages for estimation process. In addition, global wavelet spectrum provides considerable information about the structure of the physical process to be modeled.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1317-1329
Sayfa sayısı13
DergiStochastic Environmental Research and Risk Assessment
Hacim29
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - 10 Tem 2015

Bibliyografik not

Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.

Parmak izi

Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap