Customer Segmentation Using RFM Model and Clustering Methods in Online Retail Industry

Sezgi Acar*, Fatma Köroğlu, Batuhan Duyuler, Tolga Kaya, Tuncay Özcan

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

In our era, the issue of analyzing and predicting customer behavior and thoroughly aligning their business strategies and marketing activities for companies increases its inevitability everyday much more than before. In this context, segmenting customers has become the most necessary action for the firms all around the world. This study aims to make customer segmentation using the invoice data of an eCommerce company in Turkey. Accordingly, customer segmentation is carried out by the application of the RFM (Recency, Frequency and Monetary) model which is one of the most significant models used in customer segmentation to identify valuable customers. More on that, clustering methods are applied on the data retrieved from the RFM model and characteristics of each customer group created are analyzed. For this purpose, the most widely used K-Means and Fuzzy C-Means algorithms in the literature were selected. Followingly, by Silhouette and Dunn Indexes, the best performing algorithm and optimum number of clusters of this eCommerce company located in Turkey are provided as an insight for strategies at the end of the study.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation - Proceedings of the INFUS 2021 Conference
EditörlerCengiz Kahraman, Selcuk Cebi, Sezi Cevik Onar, Basar Oztaysi, A. Cagri Tolga, Irem Ucal Sari
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar69-77
Sayfa sayısı9
ISBN (Basılı)9783030856250
DOI'lar
Yayın durumuYayınlandı - 2022
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2021 - Istanbul, Turkey
Süre: 24 Ağu 202126 Ağu 2021

Yayın serisi

AdıLecture Notes in Networks and Systems
Hacim307
ISSN (Basılı)2367-3370
ISSN (Elektronik)2367-3389

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2021
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot24/08/2126/08/21

Bibliyografik not

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Parmak izi

Customer Segmentation Using RFM Model and Clustering Methods in Online Retail Industry' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap