Container Terminal Workload Modeling Using Machine Learning Techniques

Üstün Atak*, Tolga Kaya, Yasin Arslanoğlu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

6 Atıf (Scopus)

Özet

Container terminals are complex facilities which serve to maritime transportation. Effectivity and productivity of the terminals are very crucial for international transportation. Often, terminal managers deal with logistic problems with high costs. Reducing operation cost and time are the key elements for a smooth and secure process. To minimize the port stay time of the vessels, each part of the operation should be optimized. In order to serve container vessels efficiently, the port management should analyze the cargo handling process considering the ship and container characteristics. In this scope, the purpose of this study to model quay crane handling time in traditional container terminals based on port operations data using machine learning techniques. To conduct operational efficiency analysis, we have analyzed container terminal operations using alternative regression models based on operations data of more than 400.000 handling movements in a traditional terminal in Turkey. Results suggest that the efficiency of the terminal can be increased in planned rush hours such as the periods before the mealtime and the vessels’ operation completion.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Techniques
Ana bilgisayar yayını alt yazısıSmart and Innovative Solutions - Proceedings of the INFUS 2020 Conference
EditörlerCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A. Cagri Tolga
YayınlayanSpringer
Sayfalar1149-1155
Sayfa sayısı7
ISBN (Basılı)9783030511555
DOI'lar
Yayın durumuYayınlandı - 2021
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2020 - Istanbul, Turkey
Süre: 21 Tem 202023 Tem 2020

Yayın serisi

AdıAdvances in Intelligent Systems and Computing
Hacim1197 AISC
ISSN (Basılı)2194-5357
ISSN (Elektronik)2194-5365

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2020
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot21/07/2023/07/20

Bibliyografik not

Publisher Copyright:
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Parmak izi

Container Terminal Workload Modeling Using Machine Learning Techniques' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap