Özet
We present a numerical implementation of the recently developed unconditionally convergent representation of general Heun functions as integral series. We produce two codes in Python available for download, one of which is especially aimed at reproducing the output of Mathematica's HeunG function. We show that the present code compares favorably with Mathematica's HeunG and with an Oc-tave/Matlab code of Motygin, in particular when the Heun function is to be evaluated at a large number of points if less accuracy is sufficient. We suggest further improvements concerning the accuracy and discuss the issue of singularities.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | Proceedings of the International Conference Days on Diffraction 2021, DD 2021 |
Editörler | O.V. Motygin, A.P. Kiselev, L. I. Goray, A. S. Kirpichnikova |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 12-18 |
Sayfa sayısı | 7 |
ISBN (Elektronik) | 9781665410892 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2021 |
Etkinlik | 2021 International Conference Days on Diffraction, DD 2021 - St. Petersburg, Russian Federation Süre: 31 May 2021 → 4 Haz 2021 |
Yayın serisi
Adı | Proceedings of the International Conference Days on Diffraction 2021, DD 2021 |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 2021 International Conference Days on Diffraction, DD 2021 |
---|---|
Ülke/Bölge | Russian Federation |
Şehir | St. Petersburg |
Periyot | 31/05/21 → 4/06/21 |
Bibliyografik not
Publisher Copyright:© 2021 IEEE.
Finansman
We thank the referee for constructive comments and suggestions. P.-L. G. is supported by the Agence Nationale de la Recherche young researcher grant № ANR-19-CE40-0006.
Finansörler | Finansör numarası |
---|---|
Agence Nationale de la Recherche | ANR-19-CE40-0006 |