TY - JOUR
T1 - Computational modeling of prefrontal cortex for meta-cognition of a humanoid robot
AU - Daglarli, Evren
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2020
Y1 - 2020
N2 - For robot intelligence and human-robot interaction (HRI), complex decision-making, interpretation, and adaptive planning processes are great challenges. These require recursive task processing and meta-cognitive reasoning mechanism. Naturally, the human brain realizes these cognitive skills by prefrontal cortex which is a part of the neocortex. Previous studies about neurocognitive robotics would not meet these requirements. Thus, it is aimed at developing a brain-inspired robot control architecture that performs spatial-temporal and emotional reasoning. In this study, we present a novel solution that covers a computational model of the prefrontal cortex for humanoid robots. Computational mechanisms are mainly placed on the bio-physical plausible neural structures embodied in different dynamics. The main components of the system are composed of several computational modules including dorsolateral, ventrolateral, anterior, and medial prefrontal regions. Also, it is responsible for organizing the working memory. A reinforcement meta-learning based explainable artificial intelligence (xAI) procedure is applied to the working memory regions of the computational prefrontal cortex model. Experimental evaluation and verification tests are processed by the developed software framework embodied in the humanoid robot platform. The humanoid robots' perceptual states and cognitive processes including emotion, attention, and intention-based reasoning skills can be observed and controlled via the developed software. Several interaction scenarios are implemented to monitor and evaluate the model's performance.
AB - For robot intelligence and human-robot interaction (HRI), complex decision-making, interpretation, and adaptive planning processes are great challenges. These require recursive task processing and meta-cognitive reasoning mechanism. Naturally, the human brain realizes these cognitive skills by prefrontal cortex which is a part of the neocortex. Previous studies about neurocognitive robotics would not meet these requirements. Thus, it is aimed at developing a brain-inspired robot control architecture that performs spatial-temporal and emotional reasoning. In this study, we present a novel solution that covers a computational model of the prefrontal cortex for humanoid robots. Computational mechanisms are mainly placed on the bio-physical plausible neural structures embodied in different dynamics. The main components of the system are composed of several computational modules including dorsolateral, ventrolateral, anterior, and medial prefrontal regions. Also, it is responsible for organizing the working memory. A reinforcement meta-learning based explainable artificial intelligence (xAI) procedure is applied to the working memory regions of the computational prefrontal cortex model. Experimental evaluation and verification tests are processed by the developed software framework embodied in the humanoid robot platform. The humanoid robots' perceptual states and cognitive processes including emotion, attention, and intention-based reasoning skills can be observed and controlled via the developed software. Several interaction scenarios are implemented to monitor and evaluate the model's performance.
KW - Artificial intelligence
KW - brain modeling
KW - cognitive robotics
KW - human-robot interaction
UR - http://www.scopus.com/inward/record.url?scp=85086075046&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2020.2998396
DO - 10.1109/ACCESS.2020.2998396
M3 - Article
AN - SCOPUS:85086075046
SN - 2169-3536
VL - 8
SP - 98491
EP - 98507
JO - IEEE Access
JF - IEEE Access
M1 - 9103513
ER -