Comparative evaluation of different classification techniques for masquerade attack detection

Wisam Elmasry*, Akhan Akbulut, Abdul Halim Zaim

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

17 Atıf (Scopus)

Özet

Masquerade detection is a special type of intrusion detection problem. Effective and early intrusion detection is a crucial basis for computer security. Although of considerable work has been focused on masquerade detection for more than a decade, achieving a high level of accuracy and a comparatively low degree of false alarm rate is still a big challenge. In this paper, we present an extensive empirical study in the area of user behaviour profiling-based masquerade detection using six of different existed machine learning methods in Azure Machine Learning (AML) studio. In order to surpass previous studies on this subject, we used four free and publicly available datasets with seven data configurations are implemented from them. Moreover, eight well-known masquerade detection evaluation metrics are used to assess methods performance against each data configuration. Finally, intensive quantitative and ROC curves analyses of results are provided at the end of this paper.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)187-209
Sayfa sayısı23
DergiInternational Journal of Information and Computer Security
Hacim13
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - 2020
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
Copyright © 2020 Inderscience Enterprises Ltd.

Parmak izi

Comparative evaluation of different classification techniques for masquerade attack detection' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap