Özet
In the prediction of overland flow, infiltration is an essential component, which should be modeled accurately to achieve optimum runoff rates. Many mathematical models that simulate the details of runoff and erosion process in hillslopes, where the rill-interrill configuration significantly affects overland flow, employ Horton’s model for infiltration due to its simplicity. However, Horton’s model does not handle adequately antecedent moisture condition (AMC) of soil. In this study, the Green-Ampt infiltration model is incorporated into a physically based overland flow model, which was originally coupled with Horton’s equation in an effort to improve the overland flow model’s prediction ability. In so doing, the model used the Horton and Green-Ampt model as an infiltration component separately and simulated flow to directly compare which infiltration equation performs better with the overland flow model. Calibration using laboratory data produced good results for both Horton with NSE = 0.88 and r2 = 0.92 and Green-Ampt with NSE = 0.90 and r2 = 0.95 while in validation, the Horton-coupled model produced lower NSE = 0.64 and r2 = 0.84 than the Green-Ampt which produced NSE = 0.85 and r2 = 0.85. The results suggest that the Green-Ampt equation can improve the performance of the overland flow model with its ability to account more accurately the AMC and flow processes in the soil.
Orijinal dil | İngilizce |
---|---|
Sayfa (başlangıç-bitiş) | 1579-1587 |
Sayfa sayısı | 9 |
Dergi | Environmental Earth Sciences |
Hacim | 74 |
Basın numarası | 2 |
DOI'lar | |
Yayın durumu | Yayınlandı - 26 Tem 2015 |
Bibliyografik not
Publisher Copyright:© 2015, Springer-Verlag Berlin Heidelberg.
Finansman
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A4A01007676) and a research grant from Korea University.
Finansörler | Finansör numarası |
---|---|
Korea University | |
Ministry of Education | NRF-2013R1A1A4A01007676 |
National Research Foundation of Korea |