Comparative analysis of statistical, machine learning, and grey methods for short-term electricity load forecasting

Tuncay Ozcan*, Tarik Küçükdeniz, Funda Hatice Sezgin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Bölümbilirkişi

1 Atıf (Scopus)

Özet

Electricity load forecasting is crucial for electricity generation companies, distributors and other electricity market participants. In this study, several forecasting techniques are applied to time series modeling and forecasting of the hourly loads. Seasonal grey model, support vector regression, random forests, seasonal ARIMA and linear regression are benchmarked on seven data sets. A rolling forecasting model is developed and 24 hours of the next day is predicted for the last 14 days of each data set. This day-ahead forecasting model is especially important in day-ahead market activities and plant scheduling operations. Experimental results indicate that support vector regression and seasonal grey model outperforms other approaches in terms of forecast accuracy for day-ahead load forecasting.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıNature-Inspired Computing
Ana bilgisayar yayını alt yazısıConcepts, Methodologies, Tools, and Applications
YayınlayanIGI Global
Sayfalar1161-1183
Sayfa sayısı23
Hacim2-3
ISBN (Elektronik)9781522507895
ISBN (Basılı)1522507884, 9781522507888
DOI'lar
Yayın durumuYayınlandı - 26 Tem 2016
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2017 by IGI Global. All rights reserved.

Parmak izi

Comparative analysis of statistical, machine learning, and grey methods for short-term electricity load forecasting' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap