Özet
The crop phenology retrieval on precision agriculture has been an important research area with the increasing demand on crops. Remotely sensed Synthetic Aperture Radar (SAR) data provides a simple possibility for automatic monitoring of agricultural fields due to the its inherit all-weather monitoring capability. Most of the studies rely on morphology based modelling of the electromagnetic backscattering which requires Monte Carlo simulations. In this paper, instead of modelling the backscattering of the signals for monitoring the crop fields, a classification scheme was implemented on the data acquired by TerraSAR-X by using the features extracted from backscattering coefficients with the machine learning algorithms which are Support Vector Machines, k-Nearest Neighbor and Regression Tree.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 4141-4144 |
Sayfa sayısı | 4 |
ISBN (Elektronik) | 9781479979295 |
DOI'lar | |
Yayın durumu | Yayınlandı - 10 Kas 2015 |
Etkinlik | IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Milan, Italy Süre: 26 Tem 2015 → 31 Tem 2015 |
Yayın serisi
Adı | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Hacim | 2015-November |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 |
---|---|
Ülke/Bölge | Italy |
Şehir | Milan |
Periyot | 26/07/15 → 31/07/15 |
Bibliyografik not
Publisher Copyright:© 2015 IEEE.