CNN-Based Deep Learning Architecture for Electromagnetic Imaging of Rough Surface Profiles

Izde Aydin, Güven Budak, Ahmet Sefer*, Ali Yapar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

10 Atıf (Scopus)

Özet

A convolutional neural network (CNN)-based deep learning (DL) technique for electromagnetic (EM) imaging of rough surfaces separating two dielectric media is presented. The direct scattering problem is formulated through the conventional integral equations, and the synthetic scattered field data are produced by a fast numerical solution technique, which is based on method of moments (MoM). Two different special CNN architectures are designed and implemented for the solution of the inverse rough surface imaging problem, wherein both random and deterministic rough surface profiles can be imaged. It is shown by a comprehensive numerical analysis that the proposed DL inversion scheme is very effective and robust.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)9752-9763
Sayfa sayısı12
DergiIEEE Transactions on Antennas and Propagation
Hacim70
Basın numarası10
DOI'lar
Yayın durumuYayınlandı - 1 Eki 2022

Bibliyografik not

Publisher Copyright:
© 1963-2012 IEEE.

Parmak izi

CNN-Based Deep Learning Architecture for Electromagnetic Imaging of Rough Surface Profiles' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap