Classification of steady state visual evoked potentials by Multi-Class T-Weight Method

Z. Iscan*, Z. Dokur

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

Özet

In this paper, Multi-Class T-Weight Method (MCTW) is presented for classification in brain-computer interface (BCI) systems. Proposed method is an extension of the existing Improved T-Weight method for multi-class problems. The method was tested on the frequency and correlation based features obtained from electroencephalogram data of 20 Subjects in a steady state visual evoked potential (SSVEP) based offline BCI classification task. Obtained classification performances with different classifiers show that the MCTW method compete with the other well-known classifiers like linear discriminant analysis (LDA) and support vector machines (SVMs). Therefore, it can be used in classifying SSVEP based electroencephalogram data with proper features.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)321-326
Sayfa sayısı6
DergiPattern Recognition and Image Analysis
Hacim25
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - 9 Nis 2015
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2015, Pleiades Publishing, Ltd.

Parmak izi

Classification of steady state visual evoked potentials by Multi-Class T-Weight Method' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap