Classification of magnetic resonance images by using genetic algorithms

Zumray Dokur*, Tamer Olmez, Ertugrul Yazgan

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıKonferans makalesibilirkişi

1 Atıf (Scopus)

Özet

A neural network trained by the genetic algorithms (GANN) is presented. Each neuron of the network forms a closed region in the input space. The closed regions which are formed by the neurons overlap each other, like STAR. Genetic algorithms are used to improve the classification performances of the magnetic resonance (MR) images with minimized number of neurons. GANN is examined comparatively with multilayer perceptron (MLP), and restricted coulomb energy (RCE). It is observed that GANN gives the best classification performance with less number of neurons after a short training time.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1391-1393
Sayfa sayısı3
DergiAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Hacim3
Yayın durumuYayınlandı - 1997
EtkinlikProceedings of the 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Chicago, IL, USA
Süre: 30 Eki 19972 Kas 1997

Parmak izi

Classification of magnetic resonance images by using genetic algorithms' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap