Classification of heart sounds using an artificial neural network

Tamer Ölmez, Zümray Dokur*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

130 Atıf (Scopus)

Özet

A novel method is presented for the classification of heart sounds (HSs). Wavelet transform is applied to a window of two periods of HSs. Two analyses are realized for the signals in the window: segmentation of the first and second HSs, and extraction of the features. After the segmentation, feature vectors are formed by using the wavelet detail coefficients at the sixth decomposition level. The best feature elements are analyzed by using dynamic programming. Grow and learn (GAL) network and linear vector quantization (LVQ) network are used for the classification of seven different HSs. It is observed that HSs of patients are successfully classified by the GAL network compared to the LVQ network.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)617-629
Sayfa sayısı13
DergiPattern Recognition Letters
Hacim24
Basın numarası1-3
DOI'lar
Yayın durumuYayınlandı - Oca 2003

Parmak izi

Classification of heart sounds using an artificial neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap