Classification of EEG signals by using support vector machines

K. Sercan Bayram, M. Ayyuce Kizrak, Bulent Bolat

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

24 Atıf (Scopus)

Özet

In this work, EEG signals were classified by support vector machines to detect whether a subject's planning to perform a task or not. Various different kernels were utilized to find the best kernel function and after that, a feature selection process was realized. The results are comparable to the recent works.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications, IEEE INISTA 2013
DOI'lar
Yayın durumuYayınlandı - 2013
Harici olarak yayınlandıEvet
Etkinlik2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications, IEEE INISTA 2013 - Albena, Bulgaria
Süre: 19 Haz 201321 Haz 2013

Yayın serisi

Adı2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications, IEEE INISTA 2013

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications, IEEE INISTA 2013
Ülke/BölgeBulgaria
ŞehirAlbena
Periyot19/06/1321/06/13

Parmak izi

Classification of EEG signals by using support vector machines' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap