Classification of ECG waveforms by using genetic algorithms

Tamer Olmez*, Zumray Dokur, Ertugrul Yazgan

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıKonferans makalesibilirkişi

5 Atıf (Scopus)

Özet

In this study, restricted coulomb energy network trained by genetic algorithms (GARCE) is proposed for ECG (electrocardiogram) waveform detection. After the R peak of the QRS complex is detected, a window containing an ECG period is formed around the R peak. The significant frequency components of the discrete Fourier transform of the signal in this window are used to form the feature vectors. Restricted coulomb energy (RCE), multilayer perceptron (MLP) and GARCE networks are comparatively examined to detect 7 different ECG waveforms. The comparative performance results of these networks indicate that the GARCE network results in faster learning and better classification performance with less number of nodes.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)92-94
Sayfa sayısı3
DergiAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Hacim1
Yayın durumuYayınlandı - 1997
EtkinlikProceedings of the 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Chicago, IL, USA
Süre: 30 Eki 19972 Kas 1997

Parmak izi

Classification of ECG waveforms by using genetic algorithms' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap