Change Detection with Manifold Embedding for Hyperspectral Images

Alp Erturk, Gulsen Taskin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

This paper proposes a manifold based approach for change detection in multitemporal hyperspectral images. Manifold representation, using Laplacian Eigenmaps, is applied for dimensionality reduction on stacked temporal datasets and change detection on the reduced datasets. The resulting latent vectors are utilized to cluster the changed vs. unchanged regions. A semi-supervised scheme is also proposed which circumvents the challenging thresholding issue and enables satisfactory binary change detection outputs. The proposed approach is validated on two real bitemporal hyperspectral datasets.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2021 11th Workshop on Hyperspectral Imaging and Signal Processing
Ana bilgisayar yayını alt yazısıEvolution in Remote Sensing, WHISPERS 2021
YayınlayanIEEE Computer Society
ISBN (Elektronik)9781665436014
DOI'lar
Yayın durumuYayınlandı - 24 Mar 2021
Harici olarak yayınlandıEvet
Etkinlik11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 - Amsterdam, Netherlands
Süre: 24 Mar 202126 Mar 2021

Yayın serisi

AdıWorkshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
Hacim2021-March
ISSN (Basılı)2158-6276

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021
Ülke/BölgeNetherlands
ŞehirAmsterdam
Periyot24/03/2126/03/21

Bibliyografik not

Publisher Copyright:
© 2021 IEEE.

Parmak izi

Change Detection with Manifold Embedding for Hyperspectral Images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap