Özet
This paper proposes a manifold based approach for change detection in multitemporal hyperspectral images. Manifold representation, using Laplacian Eigenmaps, is applied for dimensionality reduction on stacked temporal datasets and change detection on the reduced datasets. The resulting latent vectors are utilized to cluster the changed vs. unchanged regions. A semi-supervised scheme is also proposed which circumvents the challenging thresholding issue and enables satisfactory binary change detection outputs. The proposed approach is validated on two real bitemporal hyperspectral datasets.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | 2021 11th Workshop on Hyperspectral Imaging and Signal Processing |
Ana bilgisayar yayını alt yazısı | Evolution in Remote Sensing, WHISPERS 2021 |
Yayınlayan | IEEE Computer Society |
ISBN (Elektronik) | 9781665436014 |
DOI'lar | |
Yayın durumu | Yayınlandı - 24 Mar 2021 |
Harici olarak yayınlandı | Evet |
Etkinlik | 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 - Amsterdam, Netherlands Süre: 24 Mar 2021 → 26 Mar 2021 |
Yayın serisi
Adı | Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing |
---|---|
Hacim | 2021-March |
ISSN (Basılı) | 2158-6276 |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 |
---|---|
Ülke/Bölge | Netherlands |
Şehir | Amsterdam |
Periyot | 24/03/21 → 26/03/21 |
Bibliyografik not
Publisher Copyright:© 2021 IEEE.