Car damage analysis for insurance market using convolutional neural networks

C. T. Artan*, Tolga Kaya

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

5 Atıf (Scopus)

Özet

As the level of competition increases, image-based vehicle claim processing is gaining an important role in the insurance industry especially in handling small but more frequent insurance claims. In this study, we explore the applicability of Convolutional Neural Networks (CNNs) to determine the level of damage using damaged car images. We have used transfer learning to analyze the advantages of available object recognition models to detect and classify damage according to the damage area and the level of damage.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Techniques in Big Data Analytics and Decision Making - Proceedings of the INFUS 2019 Conference
EditörlerCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A.Cagri Tolga
YayınlayanSpringer Verlag
Sayfalar313-321
Sayfa sayısı9
ISBN (Basılı)9783030237554
DOI'lar
Yayın durumuYayınlandı - 2020
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2019 - Istanbul, Turkey
Süre: 23 Tem 201925 Tem 2019

Yayın serisi

AdıAdvances in Intelligent Systems and Computing
Hacim1029
ISSN (Basılı)2194-5357
ISSN (Elektronik)2194-5365

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2019
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot23/07/1925/07/19

Bibliyografik not

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

Parmak izi

Car damage analysis for insurance market using convolutional neural networks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap