Büyük veri kümelerinin yaklaçik spektral öbeklemesi için k-ortalama++ nicemleme yönteminin kullanilmasi

Berna Yalçin, Kadim Taşdemir

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

3 Atıf (Scopus)

Özet

Spectral clustering (SC) has been commonly used in recent years, thanks to its nonparametric model, its ability to extract clusters of different manifolds and its easy application. However, SC is infeasible for large datasets because of its high computational cost and memory requirement. To address this challenge, approximate spectral clustering (ASC) has been proposed for large datasets. ASC involves two steps: firstly limited number of data representatives (also known as prototypes) are selected by sampling or quantization methods, then SC is applied to these representatives using various similarity criteria. In this study, several quantization and sampling methods are compared for ASC. Among them, k-means++, which is a recently popular algorithm in clustering, is used to select prototypes in ASC for the first time. Experiments on different datasets indicate that k-means++ is a suitable alternative to neural gas and selective sampling in terms of accuracy and computational cost.

Tercüme edilen katkı başlığıThe use of k-means++ for approximate spectral clustering of large datasets
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings
YayınlayanIEEE Computer Society
Sayfalar220-223
Sayfa sayısı4
ISBN (Basılı)9781479948741
DOI'lar
Yayın durumuYayınlandı - 2014
Etkinlik2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Trabzon, Turkey
Süre: 23 Nis 201425 Nis 2014

Yayın serisi

Adı2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2014 22nd Signal Processing and Communications Applications Conference, SIU 2014
Ülke/BölgeTurkey
ŞehirTrabzon
Periyot23/04/1425/04/14

Parmak izi

Büyük veri kümelerinin yaklaçik spektral öbeklemesi için k-ortalama++ nicemleme yönteminin kullanilmasi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap