Autoregressive Modelling Techniques for Enhanced TWRI

Salih Vehbi Comert, Isin Erer

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

High resolution methods such as spectral estimation or compressive sensing based ones have been proposed for through-wall radar (TWR) since conventional beam-forming approach suffers from high side-lobes besides low resolution. In this study auto-regressive (AR) modeling is applied to TWR data after beamforming to enhance image quality. The results are compared with existing beam-space MUSIC and compressive sensing based methods in terms of target detectability.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2021 IEEE Conference on Antenna Measurements and Applications, CAMA 2021
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar398-401
Sayfa sayısı4
ISBN (Elektronik)9781728196978
DOI'lar
Yayın durumuYayınlandı - 2021
Etkinlik2021 IEEE Conference on Antenna Measurements and Applications, CAMA 2021 - Antibes Juan-les-Pins, France
Süre: 15 Kas 202117 Kas 2021

Yayın serisi

Adı2021 IEEE Conference on Antenna Measurements and Applications, CAMA 2021

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2021 IEEE Conference on Antenna Measurements and Applications, CAMA 2021
Ülke/BölgeFrance
ŞehirAntibes Juan-les-Pins
Periyot15/11/2117/11/21

Bibliyografik not

Publisher Copyright:
© 2021 IEEE.

Parmak izi

Autoregressive Modelling Techniques for Enhanced TWRI' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap