Automatic Building Extraction from VHR Remote Sensing Images Using Geoai Methods

Gafur Semi Şengül*, Elif Sertel

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Building footprint extraction is a crucial task in remote sensing that helps acquire accurate building information for various applications such as city planning, population estimation, and disaster management. In this study, we explored the performance of Unet, Unet++, and DeepLabV3+ segmentation architectures on a very high-resolution Wuhan University Aerial Building dataset. We used InceptionResNetV2 and SE-ResNeXt101 encoders with these segmentation models after conducting pre-experiments with multiple encoder and hyper-parameter combinations. Furthermore, we implemented transfer learning by using the shared weights of a previous building detection study. We converted the raster outputs of deep learning models to vector format to enable a better spatial comparison among different models. All models were trained on the Kaggle platform, utilizing a Tesla P100-PCIe-16GB GPU and the PyTorch library. The F-1 scores for the test dataset range between 0.9867 and 0.9897 for different experiments. As a final assessment, we visually compared our experiment results with the Segment Anything Model.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar8109-8112
Sayfa sayısı4
ISBN (Elektronik)9798350360325
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece
Süre: 7 Tem 202412 Tem 2024

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
Ülke/BölgeGreece
ŞehirAthens
Periyot7/07/2412/07/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

Automatic Building Extraction from VHR Remote Sensing Images Using Geoai Methods' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap