Automated Lane Change Decision Making using Deep Reinforcement Learning in Dynamic and Uncertain Highway Environment

Ali Alizadeh, Majid Moghadam, Yunus Bicer, Nazim Kemal Ure, Ugur Yavas, Can Kurtulus

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

89 Atıf (Scopus)

Özet

Autonomous lane changing is a critical feature for advanced autonomous driving systems, that involves several challenges such as uncertainty in other driver's behaviors and the trade-off between safety and agility. In this work, we develop a novel simulation environment that emulates these challenges and train a deep reinforcement learning agent that yields consistent performance in a variety of dynamic and uncertain traffic scenarios. Results show that the proposed data-driven approach performs significantly better in noisy environments compared to methods that rely solely on heuristics.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar1399-1404
Sayfa sayısı6
ISBN (Elektronik)9781538670248
DOI'lar
Yayın durumuYayınlandı - Eki 2019
Etkinlik2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 - Auckland, New Zealand
Süre: 27 Eki 201930 Eki 2019

Yayın serisi

Adı2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
Ülke/BölgeNew Zealand
ŞehirAuckland
Periyot27/10/1930/10/19

Bibliyografik not

Publisher Copyright:
© 2019 IEEE.

Parmak izi

Automated Lane Change Decision Making using Deep Reinforcement Learning in Dynamic and Uncertain Highway Environment' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap