Automated analysis of phase-contrast optical microscopy time-lapse images: application to wound healing and cell motility assays of breast cancer

Yusuf Sait Erdem, Aydin Ayanzadeh, Berkay Mayalı, Muhammed Balıkçi, Özge Nur Belli, Mahmut Uçar, Özden Yalçın Özyusal, Devrim Pesen Okvur, Sevgi Önal, Kenan Morani, Leonardo Obinna Iheme, Behçet Uğur Töreyin, Devrim Ünay

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümBölümbilirkişi

1 Atıf (Scopus)

Özet

This chapter describes a workflow for analyzing phase-contrast microscopy (PCM) data from two fundamental types of biomedical assays: assays for cell motility and assays for wound healing. The workflow of the analysis is composed of the methods for acquiring, restoring, segmenting, and quantifying biomedical data. In the literature, there have been separate methods aimed at specific stages of PCM data analysis. Nonetheless, there has never been a complete workflow for all stages of analysis. This work is an innovation that proposes an end-to-end workflow for image pre-processing, deep learning segmentation, tracking, and quantification stages in cell motility and wound healing assay analyses. The findings indicate that domain knowledge can be used to make simple but significant improvements to the results of cutting-edge methods. Furthermore, even for deep learning-based methods, pre-processing is clearly a necessary step in the workflow.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıDiagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods
YayınlayanElsevier
Sayfalar137-154
Sayfa sayısı18
ISBN (Elektronik)9780323961295
ISBN (Basılı)9780323996815
DOI'lar
Yayın durumuYayınlandı - 1 Oca 2023

Bibliyografik not

Publisher Copyright:
© 2023 Elsevier Inc. All rights reserved.

Parmak izi

Automated analysis of phase-contrast optical microscopy time-lapse images: application to wound healing and cell motility assays of breast cancer' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap