Artificial Neural Network Modeling of a Synchronous Reluctance Motor

Turan Alp Sarikaya, Caner Korel, Lale T. Ergene

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Artificial neural networks are applied in different application areas, and electrical machine implementation is one of them. The structures, resembling the motor behavior like motor controllers, observers, parameter prediction units, can also be modeled with artificial neural networks. Choosing network structure, layer, and neuron numbers play a critical role to make the model successful. In this study, multilayer feedforward and recurrent neural networks are trained with various layer and neuron numbers to compare their speed and torque tracking performances. The average training time for each combination and optimal window for neuron and layer numbers are also evaluated.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2022 22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781665411394
DOI'lar
Yayın durumuYayınlandı - 2022
Etkinlik22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 - Bourgas, Bulgaria
Süre: 1 Haz 20224 Haz 2022

Yayın serisi

Adı2022 22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022
Ülke/BölgeBulgaria
ŞehirBourgas
Periyot1/06/224/06/22

Bibliyografik not

Publisher Copyright:
© 2022 IEEE.

Parmak izi

Artificial Neural Network Modeling of a Synchronous Reluctance Motor' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap