Özet
Artificial neural networks are applied in different application areas, and electrical machine implementation is one of them. The structures, resembling the motor behavior like motor controllers, observers, parameter prediction units, can also be modeled with artificial neural networks. Choosing network structure, layer, and neuron numbers play a critical role to make the model successful. In this study, multilayer feedforward and recurrent neural networks are trained with various layer and neuron numbers to compare their speed and torque tracking performances. The average training time for each combination and optimal window for neuron and layer numbers are also evaluated.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | 2022 22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 - Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Elektronik) | 9781665411394 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2022 |
Etkinlik | 22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 - Bourgas, Bulgaria Süre: 1 Haz 2022 → 4 Haz 2022 |
Yayın serisi
Adı | 2022 22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 - Proceedings |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 22nd International Symposium on Electrical Apparatus and Technologies, SIELA 2022 |
---|---|
Ülke/Bölge | Bulgaria |
Şehir | Bourgas |
Periyot | 1/06/22 → 4/06/22 |
Bibliyografik not
Publisher Copyright:© 2022 IEEE.