Armoni Aramasi Tabanli DVM Parametre Seçimi ve Hiperspektral Görüntü Siniflandirma Uygulamalari

Oǧuzhan Ceylan, Gülşen Taşkin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

7 Atıf (Scopus)

Özet

Support vector machines is a very efficient and frequently used method in classification of hyperspectral images since they provide high classification accuracy even with a limited number of training samples. The accuracy of SVM depends on choice of kernel parameters. In order to obtain a high classification accuracy, it is vital to optimally determine the kernel parameters. In this work, harmony search method, that has been recently introduced as a heuristic method, will be used to optimally determine the kernel parameters of SVM's radial basis kernel function, and the proposed approach will firstly be experimented on hyperspectral datasets. The proposed approach will be compared to classical grid search strategy and genetic algorithm in terms of computational time and classification accuracy.

Tercüme edilen katkı başlığıSVM parameter selection based on harmony search with an application to hyperspectral image classification
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar657-660
Sayfa sayısı4
ISBN (Elektronik)9781509016792
DOI'lar
Yayın durumuYayınlandı - 20 Haz 2016
Etkinlik24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey
Süre: 16 May 201619 May 2016

Yayın serisi

Adı2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???24th Signal Processing and Communication Application Conference, SIU 2016
Ülke/BölgeTurkey
ŞehirZonguldak
Periyot16/05/1619/05/16

Bibliyografik not

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Harmony search
  • Hyperspectral image classification
  • model selection

Parmak izi

Armoni Aramasi Tabanli DVM Parametre Seçimi ve Hiperspektral Görüntü Siniflandirma Uygulamalari' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap