Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures

Kadim Taşdemir*, Berna Yalçin, Isa Yildirim

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

This is a summary of the paper published in [1] which proposes new hybrid similarity measures exploiting various information types such as density, distance and topology, to achieve high accuracies by approximate spectral clustering (an algorithm based on similarity based graph-cut optimization). The experiments in [1] on a wide variety of datasets show the outperformance of the proposed advanced similarities.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıSimilarity-Based Pattern Recognition - 3rd International Workshop, SIMBAD 2015, Proceedings
EditörlerMarcello Pelillo, Marco Loog, Aasa Feragen
YayınlayanSpringer Verlag
Sayfalar226-228
Sayfa sayısı3
ISBN (Basılı)9783319242606
Yayın durumuYayınlandı - 2015
Harici olarak yayınlandıEvet
Etkinlik3rd International Workshop on Similarity-Based Pattern Recognition, SIMBAD 2015 - Copenhagen, Denmark
Süre: 12 Eki 201514 Eki 2015

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim9370
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???3rd International Workshop on Similarity-Based Pattern Recognition, SIMBAD 2015
Ülke/BölgeDenmark
ŞehirCopenhagen
Periyot12/10/1514/10/15

Bibliyografik not

Publisher Copyright:
© Springer International Publishing Switzerland 2015.

Parmak izi

Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap