Applying Machine Learning for Forest Attribute Mapping in Latvia - Sharing Insights from the Swedish Approach

Johan E.S. Fransson*, Dag Björnberg, Anton Holmström, Jorge F. Lazo, Welf Löve, Mats Nilsson, Jari Salo, Maurizio Santoro, Elif Sertel, Shafiullah Soomro, Jörgen Wallerman, Cem Ünsalan, Juris Zarinš

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

In this study, a novel approach to map forest attributes has been investigated for boreal forests in Sweden. The methodology relies on machine learning, utilizing a combination of remote sensing data and field data for both training and evaluating the proposed models. To ensure the accuracy in estimating forest attributes at any given time, the approach incorporates a broad range of available remote sensing data including airborne laser scanning (ALS) data, weekly satellite data from Sentinel-1 and Sentinel-2, and global forest map data. However, in this study focus has been on utilizing ALS data. The field data utilized in the study are derived from the Swedish National Forest Inventory and encompass measurements of key forest variables such as above-ground biomass, stem volume, basal area-weighted mean tree height, basal area-weighted mean diameter at breast height, and basal area. The potential of exporting knowledge gained from mapping Sweden to other forested landscapes such as in Latvia, using model updating with limited reference data from the new targeted area will be the next step to investigate. Here, data from Sweden were used to take the first steps towards developing a mapping methodology. The results demonstrate a promising potential of the proposed approach that will showcase new possibilities to share knowledge of updated forest mapping using the increasing flow of high-precision remote sensing data.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar5320-5323
Sayfa sayısı4
ISBN (Elektronik)9798350360325
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece
Süre: 7 Tem 202412 Tem 2024

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
Ülke/BölgeGreece
ŞehirAthens
Periyot7/07/2412/07/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

Applying Machine Learning for Forest Attribute Mapping in Latvia - Sharing Insights from the Swedish Approach' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap