Application of InP neural network to ECG beat classification

Tamer Ölmez, Zümray Dokur*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

9 Atıf (Scopus)

Özet

This paper presents an application of a hybrid neural network structure to the classification of the electrocardiogram (ECG) beats. Three different feature extraction methods are comparatively examined, discrete cosine transform, wavelet transform and a direct method. Classification performances, training times and the numbers of nodes of Kohonen network, Restricted Coulomb Energy (RCE) network and the hybrid neural network are presented. To increase the classification performance and to decrease the number of nodes, the hybrid neural network is trained by Genetic Algorithms (GAs). Ten types of ECG beats obtained from the MITBIH database and from a real-time ECG measurement system are classified with a success of 98% by using the hybrid neural network structure and discrete cosine transform together.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)144-155
Sayfa sayısı12
DergiNeural Computing and Applications
Hacim11
Basın numarası3-4
DOI'lar
Yayın durumuYayınlandı - May 2003

Parmak izi

Application of InP neural network to ECG beat classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap