TY - JOUR
T1 - Antarctic summer sea ice concentration and extent
T2 - Comparison of ODEN 2006 ship observations, satellite passive microwave and NIC sea ice charts
AU - Ozsoy-Cicek, B.
AU - Xie, H.
AU - Ackley, S. F.
AU - Ye, K.
PY - 2009
Y1 - 2009
N2 - Antarctic sea ice cover has shown a slight increase (<1%/decade) in overall observed ice extent as derived from satellite mapping from 1979 to 2008, contrary to the decline observed in the Arctic regions. Spatial and temporal variations of the Antarctic sea ice however remain a significant problem to monitor and understand, primarily due to the vastness and remoteness of the region. While satellite remote sensing has provided and has great future potential to monitor the variations and changes of sea ice, uncertainties remain unresolved. In this study, the National Ice Center (NIC) ice edge and the AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) ice extent are examined, while the ASPeCt (Antarctic Sea Ice Process and Climate) ship observations from the Oden expedition in December 2006 are used as ground truth to verify the two products during Antarctic summer. While there is a general linear trend between ASPeCt and AMSR-E ice concentration estimates, there is poor correlation (R2Combining double low line0.41) and AMSR-E tends to underestimate the low ice concentrations. We also found that the NIC sea ice edge agrees well with ship observations, while the AMSR-E shows the ice edge further south, consistent with its poorer detection of low ice concentrations. The northward extent of the ice edge at the time of observation (NIC) had mean values varying from 38 km to 102 km greater on different days for the area as compared with the AMSR-E sea ice extent. For the circumpolar area as a whole in the December period examined, AMSR-E therefore may underestimate the area inside the ice edge at this time by up to 14% or, 1.5 million km 2 less area, compared to the NIC ice charts. Preliminary comparison of satellite scatterometer data however, suggests better resolution of low concentrations than passive microwave, and therefore better agreement with ship observations and NIC charts of the area inside the ice edge during Antarctic summer. A reanalysis data set for Antarctic sea ice extent that relies on the decade long scatterometer and high resolution satellite data set, instead of passive microwave, may therefore give better fidelity for the recent sea ice climatology.
AB - Antarctic sea ice cover has shown a slight increase (<1%/decade) in overall observed ice extent as derived from satellite mapping from 1979 to 2008, contrary to the decline observed in the Arctic regions. Spatial and temporal variations of the Antarctic sea ice however remain a significant problem to monitor and understand, primarily due to the vastness and remoteness of the region. While satellite remote sensing has provided and has great future potential to monitor the variations and changes of sea ice, uncertainties remain unresolved. In this study, the National Ice Center (NIC) ice edge and the AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) ice extent are examined, while the ASPeCt (Antarctic Sea Ice Process and Climate) ship observations from the Oden expedition in December 2006 are used as ground truth to verify the two products during Antarctic summer. While there is a general linear trend between ASPeCt and AMSR-E ice concentration estimates, there is poor correlation (R2Combining double low line0.41) and AMSR-E tends to underestimate the low ice concentrations. We also found that the NIC sea ice edge agrees well with ship observations, while the AMSR-E shows the ice edge further south, consistent with its poorer detection of low ice concentrations. The northward extent of the ice edge at the time of observation (NIC) had mean values varying from 38 km to 102 km greater on different days for the area as compared with the AMSR-E sea ice extent. For the circumpolar area as a whole in the December period examined, AMSR-E therefore may underestimate the area inside the ice edge at this time by up to 14% or, 1.5 million km 2 less area, compared to the NIC ice charts. Preliminary comparison of satellite scatterometer data however, suggests better resolution of low concentrations than passive microwave, and therefore better agreement with ship observations and NIC charts of the area inside the ice edge during Antarctic summer. A reanalysis data set for Antarctic sea ice extent that relies on the decade long scatterometer and high resolution satellite data set, instead of passive microwave, may therefore give better fidelity for the recent sea ice climatology.
UR - http://www.scopus.com/inward/record.url?scp=75749115594&partnerID=8YFLogxK
U2 - 10.5194/tc-3-1-2009
DO - 10.5194/tc-3-1-2009
M3 - Article
AN - SCOPUS:75749115594
SN - 1994-0416
VL - 3
SP - 1
EP - 9
JO - Cryosphere
JF - Cryosphere
IS - 1
ER -