Anfis model for vibration signals based on aging process in electric motors

Duygu Bayram*, Serhat Şeker

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

9 Atıf (Scopus)

Özet

In this study, the aging process of an electric motor is accomplished by adaptive neuro-fuzzy inference system (ANFIS) using vibration signals. Different ANFIS models are compared for representing the aging process in the best possible way. An artificial aging experiment is performed and vibration data taken from the initial (healthy) and final (faulty) cases are used to identify the aging process. Four different ANFIS models are presented. Moving average (MA) filters are applied to the input and output pairs for different lagging factors to change the smoothness degree of the data and thus the performance of system identification. The success of the models is evaluated on three conditions; the performance of the ANFIS and the linear correlation between expected output (faulty case data) and aging model output, in time and frequency domains.The study also evaluates the influence of preprocessing using MA filtering on the ANFIS performance for vibration data which have stochastic characteristics.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1107-1114
Sayfa sayısı8
DergiSoft Computing
Hacim19
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - Nis 2015

Bibliyografik not

Publisher Copyright:
© 2014, Springer-Verlag Berlin Heidelberg.

Parmak izi

Anfis model for vibration signals based on aging process in electric motors' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap