Analyzing the Effect of Combined Degradations on Face Recognition

Erdi Saritas, Hazim Kemal Ekenel

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

A face recognition model is typically trained on large datasets of images that may be collected from controlled environments. This results in performance discrepancies when applied to real-world scenarios due to the domain gap between clean and in-the-wild images. Therefore, some researchers have investigated the robustness of these models by analyzing synthetic degradations. Yet, existing studies have mostly focused on single degradation factors, which may not fully capture the complexity of real-world degradations. This work addresses this problem by analyzing the impact of both single and combined degradations using a real-world degradation pipeline extended with under/over-exposure conditions. We use the LFW dataset for our experiments and assess the model's performance based on verification accuracy. Results reveal that single and combined degradations show dissimilar model behavior. The combined effect of degradation significantly lowers performance even if its single effect is negligible. This work emphasizes the importance of accounting for real-world complexity to assess the robustness of face recognition models in real-world settings. The code is publicly available at https://github.com/ThEnded32/AnalyzingCombinedDegradations

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition, FG 2024
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350394948
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik18th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2024 - Istanbul, Turkey
Süre: 27 May 202431 May 2024

Yayın serisi

Adı2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition, FG 2024

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???18th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2024
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot27/05/2431/05/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

Analyzing the Effect of Combined Degradations on Face Recognition' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap