Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization

Hazim Kemal Ekenel*, Rainer Stiefelhagen

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

66 Atıf (Scopus)

Özet

In this paper, the effects of feature selection and feature normalization to the performance of a local appearance based face recognition scheme are presented. From the local features that are extracted using block-based discrete cosine transform, three feature sets are derived. These local feature vectors are normalized in two different ways; by making them unit norm and by dividing each coefficient to its standard deviation that is learned from the training set. The input test face images are then classified using four different distance measures: L1 norm, L2 norm, cosine angle and covariance between feature vectors. Extensive experiments have been conducted on the AR and CMU PIE face databases. The experimental results show the importance of using appropriate feature sets and doing normalization on the feature vector.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2006 Conference on Computer Vision and Pattern Recognition Workshop
DOI'lar
Yayın durumuYayınlandı - 2006
Harici olarak yayınlandıEvet
Etkinlik2006 Conference on Computer Vision and Pattern Recognition Workshops - New York, NY, United States
Süre: 17 Haz 200622 Haz 2006

Yayın serisi

AdıProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Hacim2006
ISSN (Basılı)1063-6919

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2006 Conference on Computer Vision and Pattern Recognition Workshops
Ülke/BölgeUnited States
ŞehirNew York, NY
Periyot17/06/0622/06/06

Parmak izi

Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap