An Intelligent System for Ranking E-commerce Customer Reviews to Boost Engagement

Ertuğrul Yücel*, Feyim Toprak, Tolga Kaya

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

This study introduces an innovative framework that utilizes learning algorithms to rank customer reviews on e-commerce platforms. Addressing the ambiguity and subjectivity in customer feedback, our approach highlights the use of an extensive dataset and feature engineering. A pivotal part of our methodology is the creation of an original target variable named ‘adjusted action rate’ (AAR), combined with advanced training techniques to alleviate ‘position bias’. This strategy allows us to effectively capture the nuances of user behavior and review dynamics. At the core of our framework are Learning to Rank (LTR) methods, specifically designed to tackle the unique challenges of review ranking. Our primary evaluation criterion is the Normalized Discounted Cumulative Gain (nDCG) metric, which assesses the efficiency of our LTR algorithm in predicting purchase likelihood based on user reviews. Validation through online A/B testing shows that our framework significantly improves user interaction, decisionmaking efficiency, and the overall shopping experience on e-commerce sites. The results confirm the success of our strategy in overcoming the complexities of review ranking, evidenced by notable enhancements in engagement metrics.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Systems - Intelligent Industrial Informatics and Efficient Networks Proceedings of the INFUS 2024 Conference
EditörlerCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A. Cagri Tolga
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar154-161
Sayfa sayısı8
ISBN (Basılı)9783031671944
DOI'lar
Yayın durumuYayınlandı - 2024
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2024 - Canakkale, Turkey
Süre: 16 Tem 202418 Tem 2024

Yayın serisi

AdıLecture Notes in Networks and Systems
Hacim1089 LNNS
ISSN (Basılı)2367-3370
ISSN (Elektronik)2367-3389

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2024
Ülke/BölgeTurkey
ŞehirCanakkale
Periyot16/07/2418/07/24

Bibliyografik not

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Parmak izi

An Intelligent System for Ranking E-commerce Customer Reviews to Boost Engagement' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap