An incremental neural network for tissue segmentation in ultrasound images

Mehmet Nadir Kurnaz*, Zümray Dokur, Tamer Ölmez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

27 Atıf (Scopus)

Özet

This paper presents an incremental neural network (INeN) for the segmentation of tissues in ultrasound images. The performances of the INeN and the Kohonen network are investigated for ultrasound image segmentation. The elements of the feature vectors are individually formed by using discrete Fourier transform (DFT) and discrete cosine transform (DCT). The training set formed from blocks of 4 × 4 pixels (regions of interest, ROIs) on five different tissues designated by an expert is used for the training of the Kohonen network. The training set of the INeN is formed from randomly selected ROIs of 4 × 4 pixels in the image. Performances of both 2D-DFT and 2D-DCT are comparatively examined for the segmentation of ultrasound images.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)187-195
Sayfa sayısı9
DergiComputer Methods and Programs in Biomedicine
Hacim85
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - Mar 2007

Parmak izi

An incremental neural network for tissue segmentation in ultrasound images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap