An experimental investigation into the drag reduction performance of dimpled plates in a fully turbulent channel flow

Yasin Kaan İlter*, Uğur Oral Ünal, Weichao Shi, Sedat Tokgöz, Mehmet Atlar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

Özet

Dimpled surfaces have gained increasing attention in recent years for their potential to reduce turbulent skin friction, a capability previously acknowledged for its beneficial implications on heat transfer. As a passive drag reduction method, dimpled surfaces offer significant advantages for marine applications due to their effectiveness and practical applicability. However, despite numerous studies, conflicting opinions and inconsistent drag reduction rates persist in the literature. This paper addresses these ambiguities and offers valuable insights into the effectiveness of dimpled surfaces for drag reduction in fully turbulent flows. We conducted an extensive experimental investigation involving various dimple configurations, including different depth-to-diameter ratios, diameters and orientations, utilising a specialised Fully Turbulent Flow Channel facility and a Particle Image Velocimetry system. Our findings demonstrated that circular dimple geometries, particularly those with low depth ratios, can achieve significant drag reduction of up to 27% as the Reynolds number increases. These results highlight the substantial potential of dimpled surfaces for improving energy efficiency in marine applications, where skin friction accounts for a significant portion of the total drag experienced by large vessels.

Orijinal dilİngilizce
Makale numarası118198
DergiOcean Engineering
Hacim307
DOI'lar
Yayın durumuYayınlandı - 1 Eyl 2024

Bibliyografik not

Publisher Copyright:
© 2024 The Authors

Parmak izi

An experimental investigation into the drag reduction performance of dimpled plates in a fully turbulent channel flow' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap