Özet
This paper presents an evolutionary reinforcement learning approach based on Deep Q Networks to address the maneuver decision challenge of unmanned aerial vehicles (UAV) in short-range aerial combat. The proposed approach aims to improve the UAVs' autonomous maneuver decision process and generate a robust policy against alternative enemy strategies. The training process involves parallel training of multiple workers, evaluation of models at regular intervals, selection of the best model, testing the best model against enemy policies, and updating the pool of enemy strategies. The proposed method continuously improves the trained models and generates more robust policies with higher win rates than standard reinforcement learning techniques or k-level learning approaches.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | DASC 2023 - Digital Avionics Systems Conference, Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Elektronik) | 9798350333572 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2023 |
Etkinlik | 42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023 - Barcelona, Spain Süre: 1 Eki 2023 → 5 Eki 2023 |
Yayın serisi
Adı | AIAA/IEEE Digital Avionics Systems Conference - Proceedings |
---|---|
ISSN (Basılı) | 2155-7195 |
ISSN (Elektronik) | 2155-7209 |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023 |
---|---|
Ülke/Bölge | Spain |
Şehir | Barcelona |
Periyot | 1/10/23 → 5/10/23 |
Bibliyografik not
Publisher Copyright:© 2023 IEEE.