An Evolutionary Reinforcement Learning Approach for Autonomous Maneuver Decision in One-to-One Short-Range Air Combat

Yasin Baykal*, Baris Baspinar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

This paper presents an evolutionary reinforcement learning approach based on Deep Q Networks to address the maneuver decision challenge of unmanned aerial vehicles (UAV) in short-range aerial combat. The proposed approach aims to improve the UAVs' autonomous maneuver decision process and generate a robust policy against alternative enemy strategies. The training process involves parallel training of multiple workers, evaluation of models at regular intervals, selection of the best model, testing the best model against enemy policies, and updating the pool of enemy strategies. The proposed method continuously improves the trained models and generates more robust policies with higher win rates than standard reinforcement learning techniques or k-level learning approaches.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıDASC 2023 - Digital Avionics Systems Conference, Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350333572
DOI'lar
Yayın durumuYayınlandı - 2023
Etkinlik42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023 - Barcelona, Spain
Süre: 1 Eki 20235 Eki 2023

Yayın serisi

AdıAIAA/IEEE Digital Avionics Systems Conference - Proceedings
ISSN (Basılı)2155-7195
ISSN (Elektronik)2155-7209

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023
Ülke/BölgeSpain
ŞehirBarcelona
Periyot1/10/235/10/23

Bibliyografik not

Publisher Copyright:
© 2023 IEEE.

Parmak izi

An Evolutionary Reinforcement Learning Approach for Autonomous Maneuver Decision in One-to-One Short-Range Air Combat' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap