TY - GEN
T1 - An efficient community detection method using parallel clique-finding ants
AU - Sadi, Sercan
AU - Öǧüdücü, Şule
AU - Uyar, A. Şima
PY - 2010
Y1 - 2010
N2 - Attractiveness of social network analysis as a research topic in many different disciplines is growing in parallel to the continuous growth of the Internet, which allows people to share and collaborate more. Nowadays, detection of community structures, which may be established on social networks, is a popular topic in Computer Science. High computational costs and non-scalability on large-scale social networks are the biggest drawbacks of popular community detection methods. The main aim of this study is to reduce the original network graph to a maintainable size so that computational costs decrease without loss of solution quality, thus increasing scalability on such networks. In this study, we focus on Ant Colony Optimization techniques to find quasi-cliques in the network and assign these quasi-cliques as nodes in a reduced graph to use with community detection algorithms. Experiments are performed on commonly used social networks with the addition of several large-scale networks. Based on the experimental results on various sized social networks, we may say that the execution times of the community detection methods are decreased while the overall quality of the solution is preserved.
AB - Attractiveness of social network analysis as a research topic in many different disciplines is growing in parallel to the continuous growth of the Internet, which allows people to share and collaborate more. Nowadays, detection of community structures, which may be established on social networks, is a popular topic in Computer Science. High computational costs and non-scalability on large-scale social networks are the biggest drawbacks of popular community detection methods. The main aim of this study is to reduce the original network graph to a maintainable size so that computational costs decrease without loss of solution quality, thus increasing scalability on such networks. In this study, we focus on Ant Colony Optimization techniques to find quasi-cliques in the network and assign these quasi-cliques as nodes in a reduced graph to use with community detection algorithms. Experiments are performed on commonly used social networks with the addition of several large-scale networks. Based on the experimental results on various sized social networks, we may say that the execution times of the community detection methods are decreased while the overall quality of the solution is preserved.
UR - http://www.scopus.com/inward/record.url?scp=79959448646&partnerID=8YFLogxK
U2 - 10.1109/CEC.2010.5586496
DO - 10.1109/CEC.2010.5586496
M3 - Conference contribution
AN - SCOPUS:79959448646
SN - 9781424469109
T3 - 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010
BT - 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010
T2 - 2010 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010
Y2 - 18 July 2010 through 23 July 2010
ER -