An adaptive sliding mode controller based on online support vector regression for nonlinear systems

Kemal Uçak*, Gülay Öke Günel

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

12 Atıf (Scopus)

Özet

In this paper, a novel adaptive sliding mode controller (SMC) based on support vector regression (SVR) is introduced for nonlinear systems. The closed-loop margin notion introduced for self-tuning regulators is rearranged in order to optimize the parameters of SMC. The proposed adjustment mechanism consists of an online SVR to identify the forward dynamics of the controlled system and SMC parameter estimators realized by separate online SVRs to approximate each tunable controller parameter. The performance of the proposed control architecture has been evaluated by simulations performed on a nonlinear continuously stirred tank reactor system, and the obtained results indicate that the SMC based on SVR provides robust and stable closed-loop performance.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)4623-4643
Sayfa sayısı21
DergiSoft Computing
Hacim24
Basın numarası6
DOI'lar
Yayın durumuYayınlandı - 1 Mar 2020

Bibliyografik not

Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Parmak izi

An adaptive sliding mode controller based on online support vector regression for nonlinear systems' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap